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ENTRANCE EXAMINATION, 2013

Pre-Ph.D./Ph.D.
Mathematical Sciences

[ Field of Study Code : MATP (160) ]

Time Allowed : 3 hours

Maximum Marks : 70

INSTRUCTIONS FOR CANDIDATES

(i)

(ii)

All questions are compulsory.

For Section-A, the answers must be
written in the space provided in
the answer table . For Section-B,
Section-C and Section-D, answers
are to be written in the space given after
each question . Answer written in any
other place will not be evaluated.
Additional pages are provided at the
end for rough work.

(iii) For each question in Section-A, exactly
one of the four choices [(a), (b), (c), (d)]
is the correct answer. Each correct
answer will be awarded +3 marks. Each
wrong answer will be given -1 mark. If
a question is not attempted, then no
marks will be awarded for it.

(iv) Questions in Section-B have short
answers and each question carries
2 marks.

(v) Answers to all the questions in
Section-C and Section-D must be
justified with mathematical reasoning,
or else they will be considered invalid.
Each question in Section-C carries
3 marks. The question in Section-D
carries 6 marks.

(vi) In the following, the symbols N, Z, Q, R
and C denote the set of natural
numbers, integers, rational numbers,
real numbers and complex numbers,
respectively. Subsets of R" are assumed
to have the usual topology unless
mentioned otherwise. For x€C, [x[
denotes the absolute value of x.

(vii) The notation [S[ is used to denote the
cardinality of a finite set S.
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Answer table for Section -A

Question No. Answer Question No. Answer

1. 9.

2. 10.

3. 11.

4. 12.

5. 13.

6. 14.

7. 15.

S. 16.
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SECTION -A

1. Which of the following rings is a field?

(a) Z / 57Z

(b) (Z/3Z)x(Z/3Z)

(c) R[x] /(x2 -2)

(d) Q[x]+2+2)

2. For a finite group G

(a) there does not exist any group homomorphism 9: G -* Z

(b) there is a unique group homomorphism 9: G -> Z

(c) there are infinitely many group homomorphisms 9: G -> Z

(d) there are exactly [ G I group homomorphisms cp : G -3 Z

3. Let R be a subring of C containing Q. Suppose it, 4-3 e R. Which of the following is
not necessarily true?

(a) J/neR

(b) n/Je R

(c) [(n+1)2 - (n-1)21/(n15)e R

(d) (,/n2-7)/(-13- +1)eR

4. Let X be a set and let B and C be some fixed subsets of X. If for any subset A of X,

A c C implies A c B, which of the following statements is true?

(a) C * B

(b) Bc C

(c) Cc B

(d) B c C
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5. Let f : X -> Y be a surjective map. Which of the following is necessarily true? (In the
following, Ids stands for the identity map on the set S)

(a) There exists g : Y -> X such that g o f = Idx

(b) There exists a unique g : Y -> X such that g o f = IdX

(c) There exists g : Y -a X such that f o g = Idy

(d) There exists a unique g : Y -* X such that f o g = Idy

6. Let - be some equivalence relation on R. We are told that under this relation , r - (r + 1)
for every r e R. We can now definitely conclude that

(a) the number of equivalence classes is infinite

the number of equivalence classes is finite

( 7T) 7C

(it -2)- (it +2)

7. Let V be a non-trivial inner product space over R. For vectors v, WE V we say v - w

if (v, w) = 0. Then the relation - is

(a) symmetric but neither reflexive nor transitive

(b) transitive but neither reflexive nor symmetric

(c) an equivalence relation (reflexive , symmetric and transitive)

(d) symmetric and transitive , but not reflexive

8. Let A e SL3 (lIt) be a matrix such that Av = v for some v * 0 in lit3. Which of the

following statements about A is necessarily true?

(a) A is a rotation

(b) A is the identity map

(c) A is diagonalizable

(d) None of the above



9. A box contains 4 blue and 3 green balls. Two balls are drawn out together at random
from the box . What is the probability that the two balls are of different colours?

(a) 5/7

(b) 4/7

(c) 3/7

(d) 2/7

10. Which of the following is a complex analytic (holomorphic ) function on the
complex plane {x + iy I x, y e R, i = )?

(a) 3(x2-y2)+2ixy

(b) (x3 -3xy2 -3x)-i(y3 -3x2y-3y)

(c) (x3 -3xy2 +3x)-i(y3 -3x2y-3y)

(d) (x3 +xy2 +3x)+i(y3 +x2y+3M

11. For a complex analytic (holomorphic) function f on C, consider the following conditions :

[C1] (Ref)(z)>O

[C2] [ f (z) Ie Z for all z E C

[C3] f(z)= i if z= 1 + n + i for all n e N, where i =

Which of the above conditions implies /imply that f is a constant function?

(a) All of [C1I, [C2] and [C3]

(b) Both [C2] and [C3], but not [Cl]

(c) Only [C2]

(d) Only [C3]
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12. The series (-1)"(n!)2 is
n_o (2n)!

(a) absolutely convergent

(b) divergent

(c) conditionally convergent

(d) bounded but not convergent

13. For any pair of non-negative real numbers x, y, consider the following inequalities

[11] yx2+y2 ?+(x+

[12] Vx2+y2 <x+y

14.

/91

Which of the following is true?

(a) Only [I1] holds

(b) Only [12] holds

(c) Neither [I1] nor [I2] holds

(d) Both [I1] and [I2] hold

Consider two maps di : R2 X Ilt2 -> R, i = 1, 2 defined as follows

dl((xl, y1), (x2, y2)):= 1x1 -x21 +31 y1 - y21

d2((x1, yl), (x2, y2)):= I max{Ixl-x21, 1y1-y21}

Which of the following is true?

(a) dl is a metric on it2, but d2 is not

(b) d2 is a metric on 1R2, but dl is not

(c) Both dl and d2 are metrics on ]1t2

(d) Neither dl nor d2 is a metric on lit2

10
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15. Consider the following statements about the closed interval X = [0, 1] :

[Si] Every infinite sequence in X has a limit point.

[S2] X has a subset which is connected but not path connected.

[S3] X has the finite intersection property.

[S4] X is a complete metric space.

Which of the above statements about X are true?

(a) Only [Si] and [S3]

(b) Only [Si], [S3] and [S4]

(c) Only [S2] and [S4]

(d) All of the above

16. Let Al 2 A2 a ... be a countable family of nonempty connected subsets of R2. Suppose

A : = n An is a nonempty set. Which of the following statements is necessarily true?
n21

(a) A is always connected

(b) A is connected if each A. is path connected

(c) A is connected if each A. is closed

(d) A is connected if each An is compact
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SECTION-B

BI. Prove or disprove :

The multiplicative groups It" = R \ {0} and C" = C \ {0} are isomorphic.

B2. Find with reason the flaw, if any, in the following sequence of arguments

(-1) - 1

(64) (-64)

Step 1. 1 =
f

64
,

-64

Step 2. = 1
8 8i

Step 3.
i

1 i

Step 4. i2 = 1,

square roots taken on both sides

4 1 = i is used

1 cancelled from both sides
8

multiplied by i on both sides

I M 1 41 i 'III iJ11,1!1011 1.111 u,A 1 I ..„i 1 41 16 I 1 11 !I,. I. I .



SECTION-C

Cl. Prove that the figure of eight and the figure of theta (as shown below) are not

homeomorphic as subsets of R2 :
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1

C2. Let f : (0, 11 R be a continuous function such that j f (x) x" dx = 0 for all n ? 0. Prove
0

that f = 0.

11 1 1.11 II!1 . 1 III! 1 1a 1 11111 ..1. 1441. 4 1044 I 1 1 . NI 1 II II 111111n. I'll 1..^ ii



C3. Let X and Y be two finite sets and f : X -> Y be a map . Prove that

1X1= Elf -'W I
jEY
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C4. For a fixed n e N, let X = {1, 2, • • •, n}. Let µ be a measure on X defined by µ ({a}) = n - a

for every a e X. Find a non-constant real-valued function fon X such that j f dµ = 0.
X

I I 1 11 1 Lp II!I , III I , I" I.,Tjti _11 . 1 yn I III, I . . nu . P a 1 1 i4 iq,m. Iqu 41. 11 1 1 1 1



SECTION-D

D1. Let E = R[34 [x] be the real vector space of real polynomials of degree less than or equal

to 3, with an inner product defined by

1

(P, Q):= JP(t)Q(t)dt

Consider the map a : E -a E defined by (aP) (x) = P (-x) for all P E E. Prove that a is a

linear operator on E and that (aP, aQ) = (P, Q). Find the eigenvalues and eigenvectors

of a. Is a diagonalizable?
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