87

Total Pages: 33

JNUEE: Question Papers (2010-2012) Rs.20/-

ENTRANCE EXAMINATION, 2012

Pre-Ph.D./Ph.D. CHEMICAL SCIENCES

[Field of Study Code : CHEP [162)]

Time Allowed: 3 hours

Maximum Marks: 75

Weighted: 70

INSTRUCTIONS FOR CANDIDATES

- (i) All questions are compulsory.
- (ii) Answers should be written in the box given in page 3.
- (iii) Each correct answer carries 3 marks. Wrong answers carry (-1) mark.
- (iv) Rough work should be done in the space given below the questions.
- (v) If additional space is required, three extra sheets provided at the end of the paper can be utilized for rough work.
- (vi) Use of calculator is permitted.

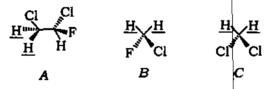
Fundamental Constants	Values
Speed of light (c)	2.99792558×10 ⁸ m s ⁻¹
Elementary charge (e)	1.602176×10 ⁻¹⁹ .C
Faraday's constant $(F = N_A e)$	9·64853×10 ⁴ C mol ⁻¹
Boltzmann's constant (k)	1⋅38065×10 ⁻²³ JK ⁻¹
Gas constant $(R = N_A k)$	8 · 31447 JK ⁻¹ mol ⁻¹
Planck's constant (h)	6·62608×10 ⁻³⁴ J-s
Avogadro's constant (N _A)	6·02214×10 ²³ mol ⁻¹
Atomic mass unit (u)	1.66054×10 ⁻²⁷ kg
Electron mass (m _e)	9·10938×10 ⁻³¹ kg
Electron charge (e)	4 · 8 × 10 ⁻¹⁰ esu
Proton mass (m _p)	1·67262×10 ⁻²⁷ kg
Neutron mass (m_n)	1·67493×10 ⁻²⁷ kg
Vacuum permittivity ($\varepsilon_0 = 1/c^2 \mu_0$)	$8.85419 \times 10^{-12} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
4πε ₀	$1.11265 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
Vacuum permeability (μ ₀)	$4\pi \times 10^{-7} \text{ J-s}^2 \text{C}^{-2} \text{ m}^{-1}$
Bohr magneton $(\mu_B = e\hbar/2m_e)$	9·27401×10 ⁻²⁴ JT ⁻¹
Nuclear magneton $(\mu_N = e\hbar/2m_p)$	5.05078×10 ⁻²⁷ JT ⁻¹
Bohr radius $(a_0 = 4\pi\epsilon_0 \hbar^2 / m_e e^2)$	5·29177×10 ⁻¹¹ m
Fine-structure constant ($\alpha = \mu_0 e^2 c/2h$)	7 · 29735 × 10 ⁻³
Inverse of fine-structure constant (α^{-1})	1·37036×10 ²
Second radiation constant $(c_2 = hc/k)$	1·43878×10 ⁻² m-K
Standard acceleration of free fall (g)	9·80665 m s ⁻²

Menthyl chloride (MC) and neomenthyl chloride (NIC) upon reaction with sodium 1. ethoxide in ethanol would produce the following products, respectively:

- Only B; C (minor) and D (major) (a)
- Only A; C (minor) and D (major) (b)
- A (major), B (minor); C (major) and D (minor) (c)
- A (minor), B (major); only C (d)

- 2. The basicity of EtNH₂ (I), HN=C(NH₂)₂ (II) and CH₃C(=NH)NH₂ (III) would follow
 - (a) II > III > I
 - (b) $I\!I\!I>I\!I>I$
 - (c) I > II > III
 - (d) I > III > II

- 3. The conversions of cyclohexanone oxime to Nylon-6 and cyclic ketones to lactones involve, respectively
 - (a) Curtius rearrangement and Wolff rearrangement
 - (b) Wolff rearrangement and Lossen rearrangement
 - (c) Beckmann rearrangement and Baeyer-Villiger oxidation
 - (d) Curtius rearrangement and Baeyer-Villiger oxidation


- 4. The following is true for Cope reaction:
 - (a) Occurs at low temperature, tertiary amines are reactants, proceeds through SYN pathway
 - (b) Occurs at low temperature, tertiary amine oxides are reactants, proceeds through SYN pathway
 - (c) Occurs at high temperature, tertiary amine oxides are reactants, proceeds through ANTI pathway
 - (d) Occurs at low temperature, tertiary amine oxides are reactants, proceeds through ANTI pathway

5. Match the structure of the eight-membered ring compounds (A-D) with the following ¹H-NMR chemical shifts (in ppm):

- (a) $A: \delta 5.74$ (s); $B: \delta 1.20 1.70$ (m, 4H), 1.85 2.50 (m, 4H), 5.35 5.94 (m, 4H); $C: \delta 2.39$ (m, 8H), 5.60 (m, 4H); $D: \delta 1.54$ (s)
- (b) $A: \delta 1.54$ (s); $B: \delta 2.39$ (m, 8H), 5.60 (m, 4H); $C: \delta 1.20 1.70$ (m, 4H), 1.85 2.50 (m, 4H), 5.35 5.94 (m, 4H); $D: \delta 5.74$ (s)
- (c) $A: \delta 1 \cdot 54$ (s); $B: \delta 1 \cdot 20 1 \cdot 70$ (m, 4H), $1 \cdot 85 2 \cdot 50$ (m, 4H), $5 \cdot 35 5 \cdot 94$ (m, 4H); $C: \delta 2 \cdot 39$ (m, 8H), $5 \cdot 60$ (m, 4H); $D: \delta 5 \cdot 74$ (s)
- (d) $A: \delta 5.74$ (s); $B: \delta 2.39$ (m, 8H), 5.60 (m, 4H); $C: \delta 1.20 1.70$ (m, 4H), 1.85 2.50 (m, 4H), 5.35 5.94 (m, 4H); $D: \delta 1.54$ (s)

6. The underlined H atoms in molecules A, B and C are, respectively

- (a) Enantiotopic, homotopic and diastereotopic
- (b) Diastereotopic, enantiotopic and homotopic
- (c) Homotopic, enantiotopic and diastereotopic
- (d) Enantiotopic, diastereotopic and homotopic

7. Addition of a triplet (T) carbene to an alkene and a singlet (S) carbene to an alkene would produce, respectively

D

(a) Only A and only D

(S)

- (b) Only B and only C
- (c) A and B and only D
- (d) A and B and only C

8. The reactions of A to B and C to D are examples of [x, y] type of sigmatropic shifts, which can be denoted as

- (a) [1, 8] and [1, 3]
- (b) [3, 5] and [1, 3]
- (c) [3, 5] and [3, 3]
- (d) [1, 8] and [3, 3]

- 9. The following is true for the complex of [18] crown-6 and KMnO₄:
 - (a) Ion-dipole interaction, phase transfer catalyst, turns benzene purple
 - (b) π - π interaction, acid catalyst, turns benzene purple
 - (c) π - π interaction, phase transfer catalyst, turns benzene yellow
 - (d) Ion-dipole interaction, acid catalyst, turns benzene yellow

- 10. XeF_2 , $[XeF_5]^-$, SF_4 , $[BBr_4]^-$ have the following molecular shapes, respectively:
 - (a) Tetrahedral, pentagonal planar, trigonal bipyramid, linear
 - (b) Linear, trigonal bipyramid, pentagonal planar, tetrahedral
 - (c) Trigonal bipyramid, pentagonal planar, tetrahedral, linear
 - (d) Linear, pentagonal planar, trigonal bipyramid, tetrahedral

11.	Symmetry	operators	that	are	lost	in	going	from	NH_3	to NH ₂ Cl	are
-----	----------	-----------	------	-----	------	----	-------	------	--------	-----------------------	-----

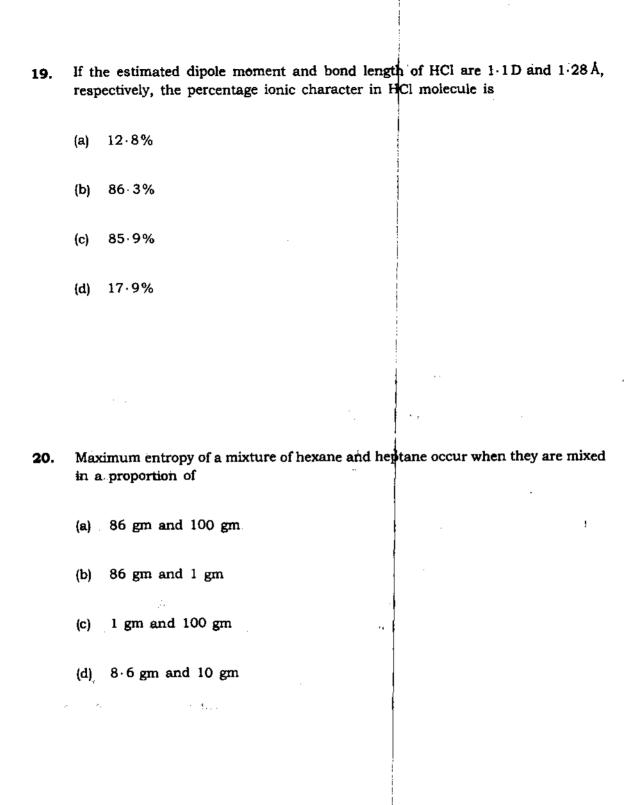
- (a) C_3 and two σ_v
- (b) C_2 and two σ_{ν}
- (c) C_3 and one σ_{ν}
- (d) $\,\,C_2$ and one σ_{ν}

12. How many degrees of vibrational freedom do $SiCl_4$, BrF_3 and $POCl_3$ possess?

- (a) 9, 6 and 9, respectively
- (b) 6, 9 and 6, respectively
- (c) 4, 3 and 4, respectively
- (d) 5, 4 and 5, respectively

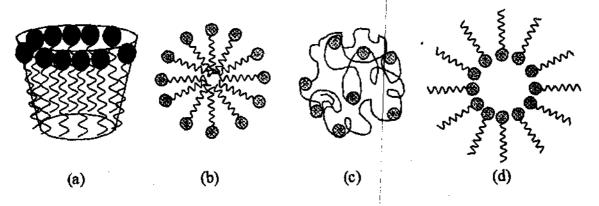
- 13. The number of framework electrons in the closo, nido and arachno series would equal to
 - (a) 2n+2, 2n+4 and 2n+6, respectively
 - (b) 2n+6, 2n+4 and 2n+2, respectively
 - (c) 2n+4, 2n+2 and 2n+6, respectively
 - (d) 2n + 6, 2n + 2 and 2n + 4, respectively

- 14. The spin only magnetic moment, (μ_8) for Co(III) octahedral complex with weak field ligand and Co(II) in a tetrahedral would be
 - (a) 3.87 BM and 1.73 BM
 - (b) 0 BM and 1.73 BM
 - (c) 1.73 BM and 3.87 BM
 - (d) 4 90 BM and 3 87 BM


15.	Jah	n-Teller distortion would be exhibited by the following:
	(a)	Cr(II) and Mn(III) in weak ligand field

- (b) Co(III) and Fe(II) in strong ligand field
- (c) Cr(III) in weak ligand field
- (d) Ni(II) and Fe(III) in weak ligand field

- 16. Which of the following is a haem iron protein?
 - (a) Rubredoxin
 - (b) Transferrin
 - (c) Haemerythrin
 - (d) Cytochrome c


- 17. The ground state terms for Ti(III) and Mn(II) would, respectively, be
 - (a) 3F and 4F
 - (b) 2D and 6S
 - (c) 4F and 5D
 - (d) 2D and 4F

- 18. In computational chemistry, one calculates the lowest energy structure of molecule through variation principle using Hartree-Fock equation, $F_i \Phi_i = \epsilon \Phi_i$. In this equation, the Fock operator (F_i) is expressed as
 - (a) $\mathbf{F}_i = \mathbf{h}_j + \Sigma_j (\mathbf{J}_j \mathbf{K}_j)$, with $\mathbf{h}_j = -(\hbar^2/2m_e) \nabla_j^2 \Sigma_n (\mathbf{Z}_n e / |\mathbf{R}_n \mathbf{r}_e|)$, and \mathbf{J} as Coulomb operator and \mathbf{K} as exchange operator, where i and j are indices for different electrons
 - (b) $\mathbf{F}_i = \mathbf{h}_i + \Sigma_i (\mathbf{J}_i \mathbf{K}_i)$, with $\mathbf{h}_i = -(\hbar^2/2m_e) \nabla_i^2 |\Sigma_n(\mathbf{Z}_n e/|\mathbf{R}_n \mathbf{r}_e|)$, and \mathbf{J} as Coulomb operator and \mathbf{K} as exchange operator, where i and j are indices for different electrons
 - (c) $\mathbf{F}_i = \mathbf{h}_i + \Sigma_j (\mathbf{J}_j \mathbf{K}_j)$, with $\mathbf{h}_i = -(\hbar^2/2m_e) \nabla_i^2 + \Sigma_n (\mathbf{Z}_n e/|\mathbf{R}_n \mathbf{r}_e|)$, and \mathbf{J} as Coulomb operator and \mathbf{K} as exchange operator, where i and j are indices for different electrons
 - (d) $F_i = h_i + \Sigma_i (J_i K_i)$, with $h_i = -(\hbar^2/2m_e) \nabla_j^2 + \Sigma_n (Z_n e/|R_n r_e|)$, and J as exchange operator and K as Coulomb operator, where i and j are indices for different electrons

- 21. If at a given temperature, the equilibrium constant (K) of the reaction $NO(g) + \frac{1}{2}O_2(g) \rightleftharpoons NO_2(g)$ is $(K) = 4 \times 10^{-3}$, then the equilibrium constant (K') for the reaction $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$ is
 - (a) 4×10^{-3}
 - (b) 16×10^3
 - (c) 6.25×10^4
 - (d) 1.6×10^{-4}

22. Which of the following pictures is the most appropriate for reverse-micelle structure?

- 23. The wave function of a quantum particle is given by $\psi(x) = e^{-ax}$. The expectation value, < x > in the range x = -1 to 1 is given by
 - (a) $(1/a) e^{-2a}$
 - (b) e^{-2a}
 - (c) $(1/a^2) e^{-2a}$
 - (d) $(1/a) e^{-a}$

- 24. A substance, when dissolved in water at 10^{-3} M concentration, absorbs 10% of an incident radiation in a path of 1 cm length. In order to absorb 90% of same radiation, the concentration of the solution should be
 - (a) $21.8 \times 10^{-3} M$
 - (b) $9.5 \times 10^{-3} M$
 - (c) $27.4 \times 10^{-3} M$
 - (d) $18 \times 10^{-3} M$

- 25. HCl molecule is well described by the Morse potential $(V = hcD_e[I e^{-a(R Re)}]^2)$ with $D_e = 42940 \cdot 6 \text{ cm}^{-1}$, $\nu = 2990 \text{ cm}^{-1}$ and $x_e \nu = 52 \text{ cm}^{-1}$ $(x_e \text{ is the annomaly of HCl molecule is}$
 - (b) 41458·6 cm⁻¹
 - (c) 42940·6 cm⁻¹
 - (d) $40002 \cdot 6 \, cm^{-1}$

87

ENTRANCE EXAMINATION, 2011

Pre-Ph.D./Ph.D. CHEMICAL SCIENCES

[Field of Study Code : CHEP (162)]

Time Allowed: 3 hours

Maximum Marks: 70

INSTRUCTIONS FOR CANDIDATES

- (i) All questions in Part—A are compulsory.
- (ii) The answers for Part—A must be written in the box provided on page 3.
- (iii) Answer only 8 questions from Part—B.
- (iv) Answer for Part—B must be done in the space provided along with the question.
- (v) Extra sheets for Rough Work have been provided at the end.
- (vi) Use of calculator is permitted.

I. Answer all the twenty (20) multiple-choice questions from this Part :

11/2×20=30

- A1. The entropy change for the reaction $4\text{Fe} + 3\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3$ for which $\Delta H^0 = -1648 \text{ kJ mol}^{-1}$ (Given, molar entropy change for Fe, O₂ and Fe₂O₃ are $27 \cdot 3$, $205 \cdot 1$ and $87 \cdot 4$ JK⁻¹ at temperature 298 K) is
 - (a) 5980 JK⁻¹ mol⁻¹
 - (b) $-549 \cdot 5 \, \text{JK}^{-1} \, \text{mol}^{-1}$
 - (c) $4980 \cdot 7 \, \text{JK}^{-1} \, \text{mol}^{-1}$
 - (d) $-18.85 \, \text{JK}^{-1} \, \text{mol}^{-1}$
- A2. If the rate constants for decomposition $N_2O_5 \rightarrow N_2O_4 + \frac{1}{2}O_2$ are 3.46×10^{-5} and 4.87×10^{-3} at 25 °C and 65 °C respectively (Given, R=1.987 cal mol⁻¹ K⁻¹), then the activation energy is given by
 - (a) 26 · 8 kcal mol -1
 - (b) 24 · 8 kcal mol -1
 - (c) 23.5 kcal mol-1
 - (d) 48.2 kcal mol -1
- A3. The quantum number of the Bohr orbit in a hydrogen atom whose radius is $0.01 \,\mathrm{mm}$ (Given, the Bohr radius of hydrogen atom is $5.292 \times 10^{-11} \,\mathrm{m}$), is
 - (a) 5
 - (b) 189225
 - (c) 435
 - (d) Cannot be calculated
- A4. In the context of self-assembled Micellar structure, which statement is true?
 - (a) Micelles can be formed by self-assembling surfactant molecules in any polar solvent except water.
 - (b) Micelles can only be formed above a particular concentration of surfactant known as Critical Association Concentration.
 - (c) Micelles can only form above a critical temperature known as Krafft temperature.
 - (d) In a Micellar structure, hydrophobic surface and hydrophilic core can be formed.

2/87 18/87 A5. The normalized mean value of x for a probability distribution function f(x) can be obtained by

(a)
$$\langle x \rangle = \frac{\int_{-\infty}^{\infty} (f(x))^2 dx}{\int_{-\infty}^{\infty} f(x) dx}$$

(b)
$$\langle x \rangle = \frac{\int_{-\infty}^{\infty} x (f(x))^2 dx}{\int_{-\infty}^{\infty} f(x) dx}$$

(c)
$$\langle x \rangle = \frac{\int x f(x) dx}{\int f(x) dx}$$

(d)
$$\langle x \rangle = \frac{\left\langle \int_{-\infty}^{\infty} x^2 f(x) dx \right\rangle}{\int_{-\infty}^{\infty} f(x) dx}$$

A6. For a simple diatomic molecule, the functional form of the potential energy curve can be expressed (with usual terms) as

(a)
$$V(r) = D_a [1 + e^{-a(r - r_c)^2}]$$

(b)
$$V(r) = D_e [1 - e^{-\alpha(r - r_e)^2}]$$

(c)
$$V(r) = -D_e[e^{-a(r-r_e)^2}-1]$$

(d)
$$V(r) = D_e [1 - e^{\alpha(r - r_e)^2}]$$

A7. A dye solution of concentration 26 μ M shows the optical density of 0.5 in a 1 cm quarts cell at 400 nm. The molar extinction coefficient of the dye is given by

(a)
$$192307 \cdot 7 M^{-1} mm^{-1}$$

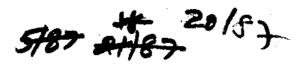
(d) Cannot be calculated

A8.	S_N 1 reaction of R—X with AgCN and S_N 2 reaction of R—X with NaCN would produce
	(a) R—N=C and R—C=N
	(b) R—C=N and R—C=N
	(c) R—C=N and R—N=C
	(d) R—N=C and R—N=C
A9.	OsO ₄ and peroxyacids would promote stereoselective hydroxylation of alkenes
	(a) in SYN and ANTI manner, respectively
	(b) both in SYN manner
	(c) both in ANTI manner
	(d) in ANTI and SYN manner, respectively
A10.	Suzuki cross-coupling reaction involves
	(a) organoboronic acid, alkyl or arom halide, Pd catalyst and an acid
	(b) organoboronic acid, alkyl or aromatic halide, Pd catalyst and base
	(c) organoboronic acid and alkyl or aromatic halide
	(d) organoboronic acid, alkyl or aromatic halide, Pd catalyst
A 11.	X_2 CHCF ₃ (X = Halide) in presence of base leads to the formation of X_2 C=CF ₂ following the mechanism
	(a) S _N 1
	(b) E1
	(c) E2
	(d) E1cB
	(PTO
	[P.T.O.
	20/87 19/87
	19/87

A12. Which of the following is true for Cope rearrangement?

- (a) [1,5] shift, intramolecular, uncatalyzed
- (b) [3,3] shift, intramolecular, uncatalyzed
- (c) [3,3] shift, intramolecular, catalyzed
- (d) [1,5] shift, intermolecular, catalyzed

A13. An examination of saturated hydrocarbons containing methyl groups show asymmetrical (vas) and symmetrical (vs) stretching modes in the region of


- (a) 2960 and 2870 cm⁻¹
- (b) 3200 and 3100 cm⁻¹
- (c) 1800-1700 cm⁻¹
- (d) 1650-1450 cm⁻¹

A14. 1H-NMR spectra of (CH₃)₂O, CH₃F and RCOOH show chemical shift (8) in ppm at

- (a) $3 \cdot 27$, $4 \cdot 30$ and $10 \cdot 8$, respectively
- (b) 4.30, 3.27 and 10.8, respectively
- (c) 3.27, 10.8 and 4.30, respectively
- (d) 10.8, 4.30 and 3.27, respectively

15. SF₄ has the following geometry

- (a) Octahedral
- (b) Trigonal bipyramidal with lone pair in the axial position
- (c) Trigonal bipyramidal with lone pair in the equatorial position
- (d) Tetrahedral

A16.	NO_2^+ and NO_2^+ have the following structure
	(a) Trigonal and linear, respectively
	(b) Both trigonal

(d) Linear and trigonal, respectively

- A17. d_{π} - d_{π} and d_{π} - π^* types of donation of electrons from ligand-to-metal is shown
 - (a) alkanes and halides
 - (b) R₃P and CNT

(c) Both linear

- (c) halides and CN-
- (d) CN and R3P
- A18. The electronic transition of the metal complexes $[Mn(H_2O)_6]^{2+}$ and $[Ni(H_2O)_6]^{2+}$ would be
 - (a) spin forbidden, Laporte forbidden and spin allowed and Laporte allowed, respectively
 - (b) both spin forbidden and Laporte forbidden
 - (c) both spin allowed and Laporte allowed
 - (d) both spin allowed and Laporte forbidden
- A19. μ (calculated) for Cr2+ in high-spin and low-spin complexes should be
 - (a) 4.90 BM and 2.83 BM, respectively
 - (b) 4.90 BM for both
 - (c) 1.73 BM and 2.83 BM, respectively
 - (d) 4.90 BM and 1.73 BM, respectively
- A20. The two-coupled photosynthetic systems PS I and PS II primarily produce
 - (a) reduced carbon, ATP and O2, respectively
 - (b) only ATP
 - (c) only reduced carbon
 - (d) ATP and reduced carbon, respectively

-6/87 20/87 21187

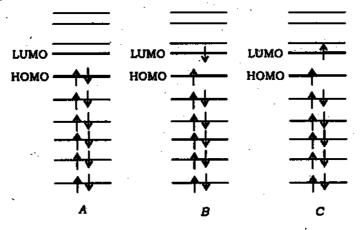
- It. Answer any eight (8) of the following descriptive questions from this Part: 5×8=40
 - B1. Write arrow formalism mechanisms for the following reactions (any two):

(i)
$$\xrightarrow{\text{NaOH}} \xrightarrow{\text{NaOH}} \bigcirc$$

(ii)
$$H_{2O}$$
 H_{2O}

B2. Write arrow formalism mechanisms and the conditions for the formation of the following products (any two):

(i)
$$\xrightarrow{\rho}$$


- B3. Explain with mechanism and energy-profile diagram:
 - (a) E2 reaction
 - (b) E1 reaction
 - (c) E1cB

With an energy-profile diagram, also explain Hammond postulate.

- B4. (a) Three bottles containing o-dichlorobenzene, m-dichlorobenzene and p-diffurobenzene are given along with broad-band decoupled 13 C-NMR spectra of the three isomers. Assign the three spectra and explain with reasoning:
 - (i) δ 127 · 0, 128 · 9, 130 · 6, 135 · 1 ppm
 - (ii) $\delta 127 \cdot 7$, $130 \cdot 5$, $132 \cdot 6$ ppm
 - (iii) $\delta 116.5$, 159.1 ppm
 - (b) Explain with mechanism:
 - (i) Robinson annulation
 - (ii) Pinacol-Pinacolone rearrangement
- B5. Explain the formation of acetaldehyde from ethylene applying Wacker process.
- **B6.** (a) Reduction of Co(III) in $[Co(NH_3)Cl]^{2+}$ complex by Cr(II) in $[Cr(H_2O_{6})]^{2+}$ is 10^{10} times faster than the reduction of $[Co(NH_3)_{6}]^{3+}$. Explain in detail.
 - (b) Permanganate solutions are intrinsically unstable in acidic solutions and decomposition is catalyzed by sunlight. Comment with detailed equations.
- B7. Compare the relative O₂ uptake ability of myoglobin and hemoglobin. Describe the cooperativity shown by the heme groups and Bohr effect.

-8/87 -24/87 2-318-3

- B8. (a) $K_2[Pt(CN)_4] \cdot 3H_2O$ is colourless and non-conducting, while $K_2[Pt(CN)_4]Br_{0.3} \cdot 3H_2O$ is coloured and conducting. Explain.
 - (b) Explain the role of cis-[Pt(NH₃)₂(Cl)₂] as an anticancer drug for treating malignant tumours.
- B9. (a) Starting from the uncertainty principle, $\Delta p \Delta x \ge \frac{\hbar}{2}$, show that for a free particle the uncertainty in energy and time is given by $\Delta E \Delta t \ge \frac{\hbar}{2}$.
 - (b) Calculate the wavelength associated with a person of weight 70 kg who walks with a speed of 10 km/h.
- **B10.** (a) Calculate the percentage ionic character in HCl molecule if the observed dipole moment is 1.08 D and bond length is 1.2746 Å.
 - (b) A first-order reflection from the {111} planes of a cubic crystal was observed at a glancing angle of 13.5° when X-rays of wavelength 154 pm were used. Calculate the length of the side of the unit cell.
- B11. (a) Molecular orbital electronic level descriptions of a molecule are shown below:

- (i) Write down the spin multiplicities of the molecule in these three descriptions.
- (ii) Identify the electronic states for the molecule in three descriptions.
- (iii) Explain how the molecule can undergo transitions $A \to B$, $B \to C$, $B \to A$ and $C \to A$.
- (iv) Arrange the total energy of the molecule in the three descriptions from highest to lowest energy value.
- (b) Explain what is meant by Oscillator Strength of any electronic transition.

9187 33/87 24/89

- **B12.** (a) With Grotthus mechanism, explain why molar conductance of H⁺ in water is abnormally high.
 - (b) What happens to the conductance of electrolytic solutions and of metals with the increase in temperature and why?
 - (c) What is the pH of a buffer solution containing $0.2 \, M$ hydrofluoric acid (p K_a is 3.2) and $1 \, M$ sodium fluoride? What will be the final pH if this buffer is half-diluted?

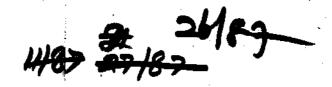
487 26/8) 25783JNUEE: Question Papers (2008-2010) Rs.10/-

87

Total Pages: 22

ENTRANCE EXAMINATION, 2010

Pre-Ph.D./Ph.D. CHEMICAL SCIENCES


[Field of Study Code : CHEP (162)]

Time Allowed: 3 hours

Maximum Marks: 70

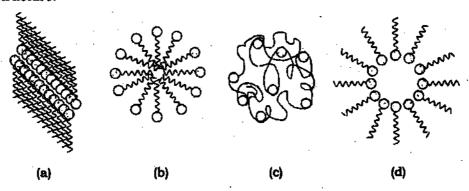
INSTRUCTIONS FOR CANDIDATES

- (i) All questions in Part-A are compulsory.
- (ii) The answers for Part—A must be written in the box provided on page 3.
- (iii) Answer only 8 questions from Part—B.
- (iv) Answer for Part—B must be done in the space provided along with the question.
- (v) Two extra sheets for Rough Work have been provided at the end.
- (vi) Use of calculator is permitted.

- I. Answer all the **twenty** (20) multiple-choice questions from Part—A. More than one correct answer is possible: 1½×20=30
 - A1. For an enzyme-substrate reaction the Michaelis constant is 0.042 mol dm⁻³. The rate of this reaction is 2.45×10⁻⁵ mol dm⁻³ s⁻¹ when the substrate concentration is 0.89 mol dm⁻³. The maximum velocity of this enzymolysis is
 - (a) $2.57 \times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1}$
 - (b) $2.45 \times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1}$
 - (c) infinite
 - (d) $1.31 \times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1}$
 - A2. The migration of the colloidal particles under the influence of an electric field is known as
 - (a) electrophoresis
 - (b) electroosmosis
 - (c) electrodialysis
 - (d) electrodispersion
 - A3. Equivalent conductivity of 0.07 N solution of a monobasic acid is $15.8 \text{ mho cm}^2\text{eq}^{-1}$. If the equivalent conductivity of the acid at infinite dilution is $350 \text{ mho cm}^2\text{eq}^{-1}$, then the dissociation constant of the acid is
 - (a) infinite
 - (b) 2.988×10^{-4}
 - (c) 2.988×10^{-5}
 - (d) 1.494×10^{-4}
 - A4. When ¹⁴N₂ (with rotational constant of 1.99 cm⁻¹) is exposed to 340 nm light, then the Stokes and anti-Stokes lines for the molecule in second rotational state can be observed at
 - (a) 29412 cm⁻¹ and 29410 cm⁻¹
 - (b) 340 3 nm and 339.9 nm
 - (c) 14779 9 cm⁻¹ and 58529 9 cm⁻¹
 - (d) 29384 cm⁻¹ and 29424 cm⁻¹

12/8) 27/89

A5. The general expression for Lennard-Jones potential for the van der Waals interaction between two particles, separated at a distance R, is given by


(a)
$$V_{LJ} = 4\varepsilon \left[\left(\frac{R}{R_0} \right)^{12} - \left(\frac{R}{R_0} \right)^6 \right]$$

(b)
$$V_{LJ} = 4\varepsilon \left[\left(\frac{R_0}{R} \right)^{12} - \left(\frac{R_0}{R} \right)^6 \right]$$

(c)
$$V_{LJ} = 4\varepsilon \left[\left(\frac{R_0}{R} \right)^{12} - \left(\frac{R_0}{R} \right)^{-6} \right]$$

(d)
$$V_{LJ} = 4\varepsilon \left[\left(\frac{R_0}{R} \right)^{12} - \left(\frac{R_0}{R} \right)^6 + \varepsilon \right]$$

- A6. Which of the following statements is/are true for Born-Oppenheimer approximation for a molecular system?
 - (a) Electronic wavefunctions can be added with nuclear wavefunctions when calculating the ground state energy of the molecule
 - (b) Electron motions can be neglected with respect to the nuclear motion when calculating the energy of the molecule
 - (c) Electronic and nuclear wavefunctions can be separated because nucleus remains almost stationary during the electron motion in the molecule
 - (d) Electronic wavefunction acts in such a way in a molecular system that it provides the potential energy surface (PES) upon which the nuclei move
- A7. Which of the following pictures is/are the most appropriate for reverse-micelle structure?

28/8)

A8. The reaction of Me Me with an Ag(I) salt produces

- (a) Me₂C=CMe₂
- (b) $Me_2C(OH)$ — $C(OH)Me_2$
- (c) Me₃C-COMe
- (d) Me₃C—C(OH)Me

A9. The conversion of cyclohexanone oxime to Nylon-6 involves

- (a) Curtius rearrangement
- (b) Schmidt rearrangement
- (c) Beckmann rearrangement
- (d) Baeyer-Villiger oxidation

A10. Perkin reaction involves the following starting material (S) and product (P)

- (a) Aromatic aldehyde (S), acid anhydride (S) and α, β-unsaturated acids (P)
- (b) Aliphatic aldehyde (S), acid anhydride (S) and α, β-unsaturated acids (P)
- (c) Aromatic aldehyde (S), acid (S) and α, β-unsaturated aldehydes (P)
- (d) Aromatic aldehyde (S) and α, β-unsaturated acids (P)

A11. The following is true for Cope reaction

- (a) Occurs at low temp., tertiary amines are reactants, proceeds through SYN pathway
- (b) Occurs at low temp., tertiary amine oxides are reactants, proceeds through SYN pathway
- (c) Occurs at high temp., tertiary amine oxides are reactants, proceeds through ANTI pathway
- (d) Occurs at low temp., tertiary amine oxides are reactants, proceeds through ANTI pathway

30/87 29/87

A12. Mass spectrum of butyraldehyde (at 70 eV) due to rearrangement produces a base peak at m/z

- (a) 38
- (b) 48
- (c) 44
- (d) 52

A13. 1H-NMR chemical shift of CH₃F, CH₃Cl, CH₃Br and CH₃I are

- (a) 2·16, 2·68, 3·05, 4·26
- (b) 4.26, 3.05, 2.16, 2.68
- (c) 4·26, 3·05, 2·68, 2·16
- (d) 2·16, 3·05, 2·68, 4·26

A14. The p K_a of CF₃H(1), C₆H₆(2), CH₃NO₂(3), CH₃COCH₃(4) and CH(CN)₃(5) would be in the following order

- (a) 2 > 1 > 4 > 3 > 5
- (b) 1 > 2 > 3 > 4 > 5
- (c) 3>1>4>2>5
- (d) 5>1>4>3>2

A15. The structures of PCl₅ and I_3 are

- (a) octahedral and planar triangle
- (b) trigonal bipyramidal and planar triangle
- (c) both trigonal bipyramidal
- (d) octahedral and square planar

A16.	Inert pair effect has been observed in
	(a) TI(I) and Bi(III)
	(b) Ga(I) and Al(III)
	(c) Ga(l) and In(l)
	(d) B(III) and In(I)
A17.	Which of the following is not true for XeF ₆ ?
	(a) Produces XeOF ₄ with glass
	(b) Distorted octahedron in geometry
	(c) A fluoride donor and an acceptor
	(d) Does not react with water
	Applying the Wade's rule, the structures respectively are

res of $B_{10}C_2H_{12}$ and $[B_9C_2H_{11}]^{2-}$,

- (a) closo and arachno
- (b) nido and closo
- (c) closo and nido
- (d) nido and arachno

A19. Which of the following lanthanide ions is paramagnetic?

- (a) La(lII)
- (b) Ce(IV)
- (c) Lu(III)
- (d) Gd(III)

A20. Which of the following is a haem iron protein?

- (a) Rubredoxin
- (b) Transferrin
- (c) Haemerythrin
- (d) Cytochrome c

II. Answer any eight (8) descriptive questions from Part-B:

5×8=40

35%

B1. Write the products and arrow formalism mechanisms for the following reactions:

B2. Upon direct photolysis or heating at 220 °C, the dimer of 2,5-dimethyl-3,4-diphenyl-2,4-cyclopentadien-1-one (A) yields compound (B). Deduce the structure of compound B using the following spectral data:

Mass m/z = 492; $IR(CCl_4) : 1704 \text{ cm}^{-1}$; $^{1}\text{H-NMR} (CDCl_3) : 0.73 \text{ (s, } 3H)$; 0.92 (s, 3H); 1.51 (s, 3H); 1.88 (s, 3H); 6.6 - 7.5 (m, 20H).

- B3. Explain with mechanism (a) Robinson annulation and (b) Claisen rearrangement.
 - **B4.** Explain with specific examples kinetically controlled versus thermodynamically controlled product formation.
 - **B5.** Give a detailed account of 'Borazine' describing its structure, synthesis and its properties.
 - **B6.** (a) Using Crystal Field Theory, explain why Fe₃O₄ has an inverse spinel structure while Mn₃O₄ has a normal spinel structure.
 - (b) Explain with examples ligand-to-metal and metal-to-ligand charge transfer in metal complexes.
 - B7. Describe the functioning of Zn containing enzymes.
 - B8. Calculate and arrange the following in increasing order of magnetic moment:
 - (a) CoF₆³⁻
 - (b) Co(II) in a tetrahedral
 - (c) Co(II) in a square planar complex

12/87 -35/87 32/83

- B9. (a) Explain with a diagram the Nernst diffusion layer for an electrode. Write down the expression for limiting current density for an electrode.
 - (b) Estimate the limiting current density at an electrode in solution with Ag⁺ concentration of 2.5 mM at 25 °C. The thickness of the Nernst diffusion layer is 0.35 mm and the ionic conductivity of Ag⁺ at infinite dilution is 6.0 ms m² mol⁻¹.
- **B10.** (a) The rate constant for a certain chemical reaction is $2 \cdot 8 \times 10^{-3} \ M^{-1} \ s^{-1}$ at 30 °C and $1 \cdot 38 \times 10^{-2} \ M^{-1} \ s^{-1}$ at 50 °C. Evaluate the activation energy of the reaction.
 - (b) Consider an electron is moving on a potential curve, $V = (2x^2y + z^3)$. Find the vector field that is acting on that electron at a position (2, 1, 1).
- B11. State Lambert-Beer law. Derive the expression for absorption in terms of molecular extinction coefficient. A dye solution of concentration 29 μ M shows the OD of 0.05 in a 0.1 cm quartz cell at an incident wavelength of 400 nm. Calculate the molar extinction coefficient of the dye at that wavelength.
- B12. (a) What is quantum yield?
 - (b) The photodecomposition of HI vapor was carried out with $\lambda = 2070 \, \text{Å}$ radiation. Absorption of each calorie of energy wave gave 1.44×10^{-5} gram of hydrogen. What is the quantum yield?
 - (c) Draw the Jablonski diagram for all possible molecular electronic transitions between three singlet and two triplet states.

78/87 33/87